# **4.3** Areas of Composite Figures



Key Vocabulary composite figure, p. 172 A **composite figure** is made up of triangles, squares, rectangles, and other two-dimensional figures. Here are two examples.



To find the area of a composite figure, separate it into figures with areas you know how to find. Then find the sum of the areas of those figures.

# EXAMPLE

# 1 Finding the Area of a Composite Figure

# Study Tip 📈

There is often more than one way to separate composite figures. In Example 1, you can separate the figure into one rectangle and two triangles.

### Find the area of the purple figure.

You can separate the figure into a rectangle and a trapezoid. Count grid lines to find the dimensions of each figure. Then find the area of each figure.



8 units



Area of Rectangle

Area of Trapezoid



So, the area of the purple figure is 24 + 12 = 36 square units.

**Reasonable?** You can check your result by counting unit squares.



#### Geometry

In this extension, you will

- find areas of composite figures.
- solve real-life problems.

#### **Real-Life Application EXAMPLE**



### Find the area of the fairway between two streams on a golf course.

There are several ways to separate the fairway into figures whose areas you can find using formulas. It appears that one way is to separate it into a right triangle and a rectangle.

Identify each shape and find any missing dimensions.



Area of Rectangle Area of Right Triangle  $A = \frac{1}{2}bh$  $A = \ell w$ = 70(40) $=\frac{1}{2}(40)(30)$ = 2800= 600

So, the area of the fairway is 2800 + 600 = 3400 square yards. 

# Practice Find the area of the shaded figure. 1. 2. 3. Find the area of the figure. 4. 5. 6. 12 ft 10 in. T 5 ft 7 cm • + 5 ft 10 in. $\bot$ 8 cm 12 ft 4 in. 11 cm

**7. ANOTHER METHOD** Find the area in Example 2 using a different method.

6 in.